
The objective of this paper is to present an overview of the newly proposed immersed continuum method in conjunction with the traditional treatment of fluidstructure interaction problems, the immersed boundary method, the extended immersed boundary method, the immersed finite element method, and the fictitious domain method. In particular, the key aspects of the immersed continuum method in comparison with the immersed boundary method are discussed. The immersed continuum method retains the same strategies employed in the extended immersed boundary method and the immersed finite element method, namely, the independent solid mesh moves on top of a fixed or prescribed background fluid mesh, and employs fully implicit time integration with a matrix-free combination of NewtonRaphson and GMRES iterative solution procedures. Therefore, the immersed continuum method is capable of handling compressible fluid interacting with compressible solid. Several numerical examples are also presented to demonstrate that the proposed immersed continuum method is a good candidate for multi-scale and multi-physics modeling platform.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
