
arXiv: 1106.0242
We show that for several variations of partially observable Markov decision processes, polynomial-time algorithms for finding control policies are unlikely to or simply don't have guarantees of finding policies within a constant factor or a constant summand of optimal. Here ``unlikely'' means ``unless some complexity classes collapse,'' where the collapses considered are P=NP, P=PSPACE, or P=EXP. Until or unless these collapses are shown to hold, any control-policy designer must choose between such performance guarantees and efficient computation.
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Markov and semi-Markov decision processes, Computer Science - Artificial Intelligence, Abstract computational complexity for mathematical programming problems, Approximation algorithms
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Markov and semi-Markov decision processes, Computer Science - Artificial Intelligence, Abstract computational complexity for mathematical programming problems, Approximation algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
