
arXiv: 1401.3874
Many web-search queries serve as the beginning of an exploration of an unknown space of information, rather than looking for a specific web page. To answer such queries effec- tively, the search engine should attempt to organize the space of relevant information in a way that facilitates exploration. We describe the Aspector system that computes aspects for a given query. Each aspect is a set of search queries that together represent a distinct information need relevant to the original search query. To serve as an effective means to explore the space, Aspector computes aspects that are orthogonal to each other and to have high combined coverage. Aspector combines two sources of information to compute aspects. We discover candidate aspects by analyzing query logs, and cluster them to eliminate redundancies. We then use a mass-collaboration knowledge base (e.g., Wikipedia) to compute candidate aspects for queries that occur less frequently and to group together aspects that are likely to be “semantically” related. We present a user study that indicates that the aspects we compute are rated favorably against three competing alternatives – related searches proposed by Google, cluster labels assigned by the Clusty search engine, and navigational searches proposed by Bing.
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB), Information Retrieval (cs.IR), Computer Science - Information Retrieval
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB), Information Retrieval (cs.IR), Computer Science - Information Retrieval
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
