<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
As examples such as the Monty Hall puzzle show, applying conditioning to update a probability distribution on a ``naive space'', which does not take into account the protocol used, can often lead to counterintuitive results. Here we examine why. A criterion known as CAR (``coarsening at random'') in the statistical literature characterizes when ``naive'' conditioning in a naive space works. We show that the CAR condition holds rather infrequently, and we provide a procedural characterization of it, by giving a randomized algorithm that generates all and only distributions for which CAR holds. This substantially extends previous characterizations of CAR. We also consider more generalized notions of update such as Jeffrey conditioning and minimizing relative entropy (MRE). We give a generalization of the CAR condition that characterizes when Jeffrey conditioning leads to appropriate answers, and show that there exist some very simple settings in which MRE essentially never gives the right results. This generalizes and interconnects previous results obtained in the literature on CAR and MRE.
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), I.2.4, Computer Science - Artificial Intelligence, Characterization and structure theory of statistical distributions, Reasoning under uncertainty in the context of artificial intelligence, Probability and inductive logic
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), I.2.4, Computer Science - Artificial Intelligence, Characterization and structure theory of statistical distributions, Reasoning under uncertainty in the context of artificial intelligence, Probability and inductive logic
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |