
We study fair mechanisms for the classic job scheduling problem on unrelated machines with the objective of minimizing the makespan. This problem is equivalent to minimizing the egalitarian social cost in the fair division of chores. The two prevalent fairness notions in the fair division literature are envy-freeness and proportionality. Prior work has established that no envy-free mechanism can provide better than an Ω(log m / log log m)-approximation to the optimal makespan, where m is the number of machines, even when payments to the machines are allowed. In strong contrast to this impossibility, our main result demonstrates that there exists a proportional mechanism (with payments) that achieves a 3/2-approximation to the optimal makespan, and this ratio is tight. To prove this result, we provide a full characterization of allocation functions that can be made proportional with payments. Furthermore, we show that for instances with normalized costs, there exists a proportional mechanism that achieves the optimal makespan. We conclude with important directions for future research concerning other fairness notions, including relaxations of envy-freeness. Notably, we show that the technique leading to the impossibility result for envy-freeness does not extend to its relaxations.
Computer Science - Computer Science and Game Theory
Computer Science - Computer Science and Game Theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
