
While payroll management is a crucial aspect of any business venture, anticipating the future financial impact of changes to the payroll policy is a challenging task due to the complexity of tax legislature. The goal of this work is to automatically explore potential payroll policies and find the optimal set of policies that satisfies the user's needs. To achieve this goal, we overcome two major challenges. First, we translate the tax legislative knowledge into a formal representation flexible enough to support a variety of scenarios in payroll calculations. Second, the legal knowledge is further compiled into a set of constraints from which a constraint solver can find the optimal policy. Furthermore, payroll computation is performed on the individual basis which might be expensive for companies with a large number of employees. To make the optimisation more efficient, we integrate it with a machine learning model that learns from the previous optimisation runs and speeds up the optimisation engine. The results of this work have been deployed by a social insurance fund.
Technology, Science & Technology, Computer Science, Social Sciences, Computer Science, Interdisciplinary Applications, Education, Scientific Disciplines, Education & Educational Research, Computer Science, Artificial Intelligence
Technology, Science & Technology, Computer Science, Social Sciences, Computer Science, Interdisciplinary Applications, Education, Scientific Disciplines, Education & Educational Research, Computer Science, Artificial Intelligence
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
