<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 2183/24893
Recent analyses suggest that encoders pretrained for language modeling capture certain morpho-syntactic structure. However, probing frameworks for word vectors still do not report results on standard setups such as constituent and dependency parsing. This paper addresses this problem and does full parsing (on English) relying only on pretraining architectures – and no decoding. We first cast constituent and dependency parsing as sequence tagging. We then use a single feed-forward layer to directly map word vectors to labels that encode a linearized tree. This is used to: (i) see how far we can reach on syntax modelling with just pretrained encoders, and (ii) shed some light about the syntax-sensitivity of different word vectors (by freezing the weights of the pretraining network during training). For evaluation, we use bracketing F1-score and las, and analyze in-depth differences across representations for span lengths and dependency displacements. The overall results surpass existing sequence tagging parsers on the ptb (93.5%) and end-to-end en-ewt ud (78.8%).
Parsing, FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Natural language processing, Pretraining, Sequence labeling, Computation and Language (cs.CL), Machine Learning (cs.LG)
Parsing, FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Natural language processing, Pretraining, Sequence labeling, Computation and Language (cs.CL), Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |