Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Convolutional Sum-Product Networks

Authors: Jhonatan de S. Oliveira; André E. dos Santos; Cory J. Butz; André Lobo Teixeira;

Deep Convolutional Sum-Product Networks

Abstract

We give conditions under which convolutional neural networks (CNNs) define valid sum-product networks (SPNs). One subclass, called convolutional SPNs (CSPNs), can be implemented using tensors, but also can suffer from being too shallow. Fortunately, tensors can be augmented while maintaining valid SPNs. This yields a larger subclass of CNNs, which we call deep convolutional SPNs (DCSPNs), where the convolutional and sum-pooling layers form rich directed acyclic graph structures. One salient feature of DCSPNs is that they are a rigorous probabilistic model. As such, they can exploit multiple kinds of probabilistic reasoning, including marginal inference and most probable explanation (MPE) inference. This allows an alternative method for learning DCSPNs using vectorized differentiable MPE, which plays a similar role to the generator in generative adversarial networks (GANs). Image sampling is yet another application demonstrating the robustness of DCSPNs. Our preliminary results on image sampling are encouraging, since the DCSPN sampled images exhibit variability. Experiments on image completion show that DCSPNs significantly outperform competing methods by achieving several state-of-the-art mean squared error (MSE) scores in both left-completion and bottom-completion in benchmark datasets.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold