<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We propose a new approach for metric learning by framing it as learning a sparse combination of locally discriminative metrics that are inexpensive to generate from the training data. This flexible framework allows us to naturally derive formulations for global, multi-task and local metric learning. The resulting algorithms have several advantages over existing methods in the literature: a much smaller number of parameters to be estimated and a principled way to generalize learned metrics to new testing data points. To analyze the approach theoretically, we derive a generalization bound that justifies the sparse combination. Empirically, we evaluate our algorithms on several datasets against state-of-the-art metric learning methods. The results are consistent with our theoretical findings and demonstrate the superiority of our approach in terms of classification performance and scalability.
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Statistics - Machine Learning, Machine Learning (stat.ML), [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Statistics - Machine Learning, Machine Learning (stat.ML), [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |