<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The nanoindentation technique allows the determination of mechanical properties at nanometric scale. Hardness (H) and elastic modulus (E) profiles are usually determined by using the Oliver-Pharr method from the load/unload curves. This approach is valid only for flat surfaces, or at least, when a very low degree of asperity is present (lower than 30 nm). The basic statement is the determination of the zero tip-surface contact point. If a rough surface is present, errors can occur in determining this contact point and, as a consequence, the surface hardness and elastic modulus profiles are drastically altered resulting in under evaluated values. Surfaces with different roughness were produced by controlled nitrogen glow discharge process on titanium. The changed nitriding parameters were different N2/H2 atmospheres and temperatures (600 °C-900 °C). The most correct H and E profiles were obtained by using the contact stiffness analysis method, proposed here, that overcomes the surface roughness. The obtained results were compared with available literature data.
nanoindentation, TA401-492, titanium, nitriding, Materials of engineering and construction. Mechanics of materials, roughness
nanoindentation, TA401-492, titanium, nitriding, Materials of engineering and construction. Mechanics of materials, roughness
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |