
SUMMARY TCP Friendly Rate Control (TFRC) has been widely used in the Internet multimedia streaming applications. However, performance of traditional TFRC algorithm degrades significantly when d eployed over wireless networks. Although numerous TFRC variants have been proposed to improve the performance of TFRC over wireless networks, designing a TFRC algorithm with graceful performance both in throughput and fairness still remains a great challenge. In this paper, a novel T FRC algorithm, named TFRC-FIT, is proposed to improve the performance of TFRC over wireless environments. In the proposed approach, the behavior of multiple TFRC flows is simulated in single connection, while the number of simulated flows is adjusted by the network queuing delay. Thr ough this mechanism, TFRC-FIT can fully utilize the capacity of wireless networks, while maintaining good fairness and TCP friendliness. Both theoretical analysis and extensive experiments over hardware network emulator, Planetlab test bed as well as commercial 3G wireless networks are carried out to characterize and validate the performance of our proposed approach.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
