Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Expert Review of Vac...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Expert Review of Vaccines
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara

Authors: Rimmelzwaan, Guus; Sutter, G;

Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara

Abstract

Recombinant modified vaccinia virus Ankara (MVA) is attractive and promising as a novel viral vector for the expression of foreign genes of interest because it possesses unique properties. In particular, its excellent safety profile and the availability of versatile vector technologies have frequently made MVA the vaccinia virus of choice for preclinical and clinical studies. Owing to its avirulence and deficiency to productively replicate after in vivo inoculation, MVA can be used under biosafety level 1 conditions. In addition to a better safety profile than replication competent vaccinia viruses, the use of MVA leads to similar levels of gene expression and has better immunostimulatory properties and improved efficacy as a recombinant vaccine. In animal models, recombinant MVA vaccines were immunogenic and induced protective immunity against various infectious agents, including viruses, bacteria and parasites. Here we review the progress that has been made in the development of recombinant MVA as a viral vector and candidate pandemic influenza H5N1 vaccine. Specifically, we will focus on the preclinical evaluation of recombinant MVA vector as pandemic influenza A/H5N1 vaccine candidates and discuss the possible future approaches for the use of these novel MVA-based vaccines.

Country
Netherlands
Related Organizations
Keywords

Vaccines, Synthetic, SDG 3 - Good Health and Well-being, Influenza A Virus, H5N1 Subtype, Influenza Vaccines, Genetic Vectors, Animals, Humans, Vaccinia virus, EMC MM-04-27-01

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
gold