
doi: 10.1586/erd.09.58
pmid: 20021239
Bioelectrodes for neural recording and neurostimulation are an integral component of a number of neuroprosthetic devices, including the commercially available cochlear implant, and developmental devices, such as the bionic eye and brain-machine interfaces. Current electrode designs limit the application of such devices owing to suboptimal material properties that lead to minimal interaction with the target neural tissue and the formation of fibrotic capsules. In designing an ideal bioelectrode, a number of design criteria must be considered with respect to physical, mechanical, electrical and biological properties. Conducting polymers have the potential to address the synergistic interaction of these properties and show promise as superior coatings for next-generation electrodes in implant devices.
User-Computer Interface, Polymers, Animals, Brain, Humans, Prostheses and Implants, Nerve Tissue, Electrodes, Implanted
User-Computer Interface, Polymers, Animals, Brain, Humans, Prostheses and Implants, Nerve Tissue, Electrodes, Implanted
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 59 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
