
Type 1 and Type 2 diabetes are complex diseases associated with multiple complications, and both genetic and environmental factors have been implicated in these pathologies. While numerous studies have provided a wealth of knowledge regarding the genetics of diabetes, the mechanistic pathways leading to diabetes and its complications remain only partly understood. Studying the role of epigenetics in diabetic complications can provide valuable new insights to clarify the interplay between genes and the environment. DNA methylation and histone modifications in nuclear chromatin can generate epigenetic information as another layer of gene transcriptional regulation sensitive to environmental signals. Recent evidence shows that key biochemical pathways and epigenetic chromatin histone methylation patterns are altered in target cells under diabetic conditions and might also be involved in the metabolic memory phenomenon noted in clinical trials and animal studies. New therapeutic targets and treatment options could be uncovered from an in-depth study of the epigenetic mechanisms that might perpetuate diabetic complications despite glycemic control.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
