<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 16149879
In the postgenomic era, DNA and protein arrays are increasing the speed at which knowledge is gathered on gene expression in cells and tissues. At the same time, researchers realize that a miniaturized and parallelized analysis of whole cells may equally expedite the acquisition of data describing cellular properties and function. Researchers are starting to explore means of generating and using cell microarrays to investigate cells at higher throughput. In this initial phase of exploration, cell microarrays are being developed for various cellular analyses including the effects of gene expression, cellular reactions to the biomolecular environment, and profiling of cell surface molecules. This article will provide an overview of different types of eukaryotic cell microarrays described to date, how they are generated, and their fields of application.
Polysaccharides, Cells, Cell Membrane, Animals, Humans, Biocompatible Materials, Microarray Analysis, Antibodies
Polysaccharides, Cells, Cell Membrane, Animals, Humans, Biocompatible Materials, Microarray Analysis, Antibodies
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |