Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chimica Techno Actaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chimica Techno Acta
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chimica Techno Acta
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chimica Techno Acta
Article . 2020
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spin–state transition in the layered barium cobaltite derivatives and their thermoelectric properties

Authors: A. I. Klyndyuk; E. A. Chizhova; S. V. Shevchenko;

Spin–state transition in the layered barium cobaltite derivatives and their thermoelectric properties

Abstract

Ba1.9Me0.1Co9O14 (Me = Ba, Sr, Ca) (BCO) layered cobaltites were prepared by means of solid-state reactions method. Crystal structure, microstructure, thermal expansion, electrical conductivity, and thermo-EMF for the obtained oxides were studied; the values of their linear thermal expansion coefficient, activation energy of electrical transport, and power factor values were calculated. It was found that BCO are p-type semiconductors, in which the spin-state transition occurs within 460-700 K temperature interval due to change in spin state of cobalt ions, which accompanied the sharp increase in electrical conductivity, activation energy of electrical conductivity, and linear thermal expansion coefficient, while thermo-EMF coefficient decreased. Partial substitution of barium by strontium or calcium in BCO leads to the increase in spin-state transition temperature and electrical conductivity of the samples, and, at the same time, thermo-EMF coefficient; consequently, their power factor values decrease.

Keywords

слоистые кобальтиты, layered barium cobaltite, thermo-EMF, THERMO-EMF, SPIN-STATE TRANSITION, layered barium cobaltite; spin–state transition; thermal expansion; electrical conductivity; thermo-EMF; power factor, кобальтит бария, LAYERED BARIUM COBALTITE, spin-state transition, QD1-999, thermal expansion, thermo-emf, electrical conductivity, power factor, POWER FACTOR, THERMAL EXPANSION, thermoelectric properties, ELECTRICAL CONDUCTIVITY, Chemistry, spin–state transition, слоистый кобальтит бария, термоэлектрические свойства

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold