
doi: 10.15671/hjbc.797525
Hydrogels are soft and smart materials with great similarity to biological systems. In the past decade, a significant progress has been achieved to produce mechanically strong and tough hydrogels. Another major challenge in gel science is to generate self-healing and shape-memory functions in hydrogels to extend their application areas. Several strategies have been developed to create self-healing ability in hydrogels by replacing the chemically cross-linked polymer network with a reversible one. Moreover, a combination of strong and weak physical cross-links was used to produce hydrogels with both self-healing and shape-memory behavior. In this review, I present recent developments in the field of self-healing and shape memory hydrogels by mainly focusing our achievements.
Engineering, Mühendislik, Hydrogels;Self-healing;Shape-memory
Engineering, Mühendislik, Hydrogels;Self-healing;Shape-memory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
