
The diagnosis of UltraSound (US) medical images is affected due to the presence of speckle noise. This noise degrades the diagnostic quality of US images by reducing small details and edges present in the image. This paper presents a novel method based on shearlet coefficients modeling of log-transformed US images. Noise-free log-transformed coefficients are modeled as Nakagami distribution and speckle noise coefficients are modeled as Gaussian distribution. Method of Log Cumulants (MoLC) and Method of Moments (MoM) are used for parameter estimation of Nakagami distribution and noise free shearlet coefficients respectively. Then noise free shearlet coefficients are obtained using Maximum a Posteriori (MaP) estimation of noisy coefficients. The experimental results were presented by performing various experiments on synthetic and real US images. Subjective and objective quality assessment of the proposed method is presented and is compared with six other existing methods. The effectiveness of the proposed method over other methods can be seen from the obtained results.
method of log cumulants, speckle denoising., method of moments, maximum a posteriori estimation, nakagami distribution, shearlet modelling, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
method of log cumulants, speckle denoising., method of moments, maximum a posteriori estimation, nakagami distribution, shearlet modelling, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
