Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Materials...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Materials Research
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2023
License: CC BY
Data sources: Lirias
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanoindentation of embedded particles

Authors: Slagter, Alejandra; Everaerts, Joris; Mortensen, Andreas;

Nanoindentation of embedded particles

Abstract

AbstractWe address the effect of elastic inhomogeneity on elastic modulus and hardness determinations made by depth-sensing indentations performed on individual particles embedded within a matrix of different elastic modulus. Finite element simulations and nanoindentation experiments are used to quantify the consequences of particle/matrix elastic inhomogeneity and we propose an adaptation of the Oliver–Pharr method that gives access to particle properties knowing those of the matrix. The method is suitable for any combination of matrix and particle elastic modulus and for any type of indenter, provided that the area of the tested particles along the surface of the sample is measured and that a large number of particles are probed. Further conditions for the implementation of the method are that testing conditions be such (i) that permanent deformation of the matrix is avoided, and (ii) that permanent deformation in each probed particle under the indenter is not affected by the matrix. Graphical abstract

Countries
Switzerland, Belgium
Keywords

Technology, ELASTIC-MODULUS, HARDNESS, Science & Technology, Nano-indentation, Materials Science, Elastic properties, 0204 Condensed Matter Physics, Materials Science, Multidisciplinary, Composite, 5104 Condensed matter physics, Article, NANO-INDENTATION, Hardness, 4016 Materials engineering, 4017 Mechanical engineering, 0912 Materials Engineering, Materials, 0913 Mechanical Engineering

1 Data sources, page 1 of 1
  • more_vert
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
hybrid