Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MRS Proceedings
Article . 1996 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immobilization and Recovery of Thorium, A Neptunium Surrogate, using Phase-Separated Glasses

Authors: T. F. Meaker; D. Karraker; M. Tosten; J. M. Pareizs; W. G. Ramsey;

Immobilization and Recovery of Thorium, A Neptunium Surrogate, using Phase-Separated Glasses

Abstract

ABSTRACTThe Savannah River Site has the majority of the United States' supply of neptunium currently stored in an acid solution in one of their canyon facilities. A program is being developed that could be utilized to ship this material, as glass, to Oak Ridge National Laboratory where the Np could be leached from the glass, purified by ion exchange and made into target material for the production of Pu-238. Ion exchange purification dictates no material be in the leachate making the isolation of the Np difficult. We have developed a process using thorium as a surrogate for Np that could immobilize the Np into a soda borosilicate glass for shipment. To achieve recovery of the Np, the glass can be phase separated prior to leaching with nitric acid. Phase separation would produces a Np-rich sodium-borate phase and a Si-rich phase similar to a Vycor® glass. The nitric acid selectively attacks the sodium-borate phase allowing high Np recovery in a solution that contains only sodium and boron. These can be easily separated from Np by ion exchange. Essentially all of the silicon which would interfere with ion exchange by precipitation is retained in the Vycor®-type phase. This technology may also be applied to other actinides stored in relatively pure solutions.This paper will report the optimization of variables for maximizing Th (a Np surrogate) recovery while minimizing Si release. Th solubility in glass, heat treatment conditions and leaching parameters will be discussed. Transmission Electron Microscopy (TEM) with energy dispersive spectroscopy (EDS) data will be included to show phase separation after heat treatment.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!