
doi: 10.1557/proc-40-227
AbstractInterdiffusion of polymer chains plays an important role in establishing good adhesion at polymer interfaces as well as in the kinetics of phase separation and mixing in polymer blends. Reptation, a process in which a given linear chain crawls along a primitive path defined by the topological constraints due to the surrounding chains, is thought to be the most important diffusion mechanism. A reptating chain of Volecular weight M should have a tracer diffusion coefficient given by D =DR =Do M−2, where D depends on the Rouse mobility of the chain and an entang ement molecular weight, Me. Because the topological constraints are assumed to be fixed, DR is independent of the molecular weight P of the polymer into which the M-chains are diffusing. In principle however if M is large enough and P is small enough the M-chain can diffuse by rearrangement of the P-chains surrounding it, a process called constraint release. The D for this process, DCR= αCRDoMe2/(MP3), where αCR is a constant approximately equal to 13, increases strongly with decreasing P. Recent experimental results, which give evidence for both reptation and constraint release, will be reviewed. These results have important implications for the diffusion of nonlinear polymer chains, e.g. stars and rings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
