Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MRS Proceedings
Article . 1990 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Weight and Molecular Weight Distribution of Kraft Lignins

Authors: Wolfgang Schmidl; Daojie Dong; Arthur L. Fricke;

Molecular Weight and Molecular Weight Distribution of Kraft Lignins

Abstract

ABSTRACTKraft lignins are the lignin degradation products from kraft pulping. They are complex, heterogeneous polymers with some polar character. The molecular weight of kraft lignins greatly affect the physical properties of black liquors, and are of primary importance in separation from black liquor and in evaluating potential uses.Several purified kraft lignins from slash pine were analyzed for number average molecular weight by vapor pressure osmometry (VPO), for weight average molecular weight by low angle laser light scattering (LALLS), and for the molecular weight distribution by high temperature size exclusion chromatography (SEC). The lignins were run in Tetrahydrofuran (THF), N, N-Dimethyl Formamide (DMF), DMF with 0.1M LiBr, and pyridine at conditions above the Theta temperature. Experimental methods are discussed.The results show that VPO may be used to determine Mn for kraft lignins if the purity of the lignins and the identity of the impurities are known. LALLS can be used to determine Mw for kraft lignins if measurements are made at or above the Theta temperature of the lignin-solvent pair. SEC should be used at temperatures at, or above, the Theta temperature of the lignin-solvent pair. Size separation is highly dependent on the solvent used, and DMF is a much better solvent than THF for high temperature SEC. Future work using moment resolution procedures to derive an accurate calibration curve are also discussed.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!