
handle: 11585/36176
Since the 1991 discovery of hollow cylindrical carbon-based unidimensional structures, the nanotubular form of matter has been thoroughly investigated leading to a wealth of literature. Their particular features are not limited to graphite but are common in many inorganic highly anisotropic two-dimensional layered compounds. The first non-mineral inorganic nanotubes, constituted of lamellar molybdenum and tungsten disulfides, were synthesized in 1992. Afterwards, a large number of inorganic nanotubes have been synthesized, opening the path to the development of nanoelectronics, due to their dielectric properties. The unique mineral phase that crystallizes with a tubular morphology is chrysotile, which has been tentatively used to prepare ultra-thin wires by filling its hollow nanodimensional core with a conductive material. To overcome its natural heterogeneity in composition, morphology, and structure, synthetic chrysotile-inspired nanotubes have been recently synthesized. These geoinspired nanotubes can be prepared with specific properties, finalized to focused achievements such as preparation of new quantum wires. The existing knowledge on the structural and physicochemical properties of mineral and synthetic chrysotile nanotubes is reviewed, with the aim of emphasizing their potential applications as nonlinear optical and conducting technological devices. Bibliography encompasses over one hundred references.
INORGANIC NANOTUBES; NANOWIRES; GEOINSPIRED; SYNTHETIC CHRYSOTILE; 1D NANOSTRUCTURE
INORGANIC NANOTUBES; NANOWIRES; GEOINSPIRED; SYNTHETIC CHRYSOTILE; 1D NANOSTRUCTURE
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
