Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polyurethaneacrylate/montmorillonite nanocomposites

Authors: Oleksii Gonchar; YURI SAVELYEV; ТAMARA TRAVINSKAYA;

Polyurethaneacrylate/montmorillonite nanocomposites

Abstract

In order to create polymer nanocomposites with high performance on the basis of polyurethaneacrylates (PUA) with montmorillonite (MMT), three methods of chemical modification of the layered silicate surface have been developed. The first modification method is based on using of two different functional modifiers (organophilic and reactive), the second method is based on modification with synthesized by us compound which contains urethane groups, and the third one in based on using synthesized by us modifier containing urethane and other reactive groups. Exchange capacity of the MMT surface was determined by adsorption of indicator “methylene blue”. Intercalation of modifier into the interlayer space of MMT was confirmed by X-ray analysis; the content of organic component in the modified MMT (MMT/M) was determined by thermogravimetric analysis. The resulting organoclay is purposed for the formation of nanostructured composites based on cross-linked polyurethane acrylates with improved physical and mechanical properties. The obtained polyurethaneacrylate nanocomposites with different type MMT/M exhibit the increased in 1,6–2,6 times tensile strength as compared to original polymer matrix. WAXS method has proved an intercalation of modifier into MMT interlayer space (increased distance between layers after modification), as well as the total exfoliation of MMT in PUA matrix, characterized by the disappearance of the absorption peak which is responsible for layered structure.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!