Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2010 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alterations in DNA Replication and Histone Levels Promote Histone Gene Amplification in Saccharomyces cerevisiae

Authors: Diana E, Libuda; Fred, Winston;

Alterations in DNA Replication and Histone Levels Promote Histone Gene Amplification in Saccharomyces cerevisiae

Abstract

Abstract Gene amplification, a process that increases the copy number of a gene or a genomic region to two or more, is utilized by many organisms in response to environmental stress or decreased levels of a gene product. Our previous studies in Saccharomyces cerevisiae identified the amplification of a histone H2A-H2B gene pair, HTA2-HTB2, in response to the deletion of the other H2A-H2B gene pair, HTA1-HTB1. This amplification arises from a recombination event between two flanking Ty1 elements to form a new, stable circular chromosome and occurs at a frequency higher than has been observed for other Ty1-Ty1 recombination events. To understand the regulation of this amplification event, we screened the S. cerevisiae nonessential deletion set for mutations that alter the amplification frequency. Among the deletions that increase HTA2-HTB2 amplification frequency, we identified those that either decrease DNA replication fork progression (rrm3Δ, dpb3Δ, dpb4Δ, and clb5Δ) or that reduce histone H3-H4 levels (hht2-hhf2Δ). These two classes are related because reduced histone H3-H4 levels increase replication fork pauses, and impaired replication forks cause a reduction in histone levels. Consistent with our mutant screen, we found that the introduction of DNA replication stress by hydroxyurea induces the HTA2-HTB2 amplification event. Taken together, our results suggest that either reduced histone levels or slowed replication forks stimulate the HTA2-HTB2 amplification event, contributing to the restoration of normal chromatin structure.

Related Organizations
Keywords

DNA Replication, Histones, Gene Amplification, Hydroxyurea, Saccharomyces cerevisiae, Chromatin, Gene Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
hybrid