Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2008
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Reacquisition of Biotin Prototrophy in Saccharomyces cerevisiae Involved Horizontal Gene Transfer, Gene Duplication and Gene Clustering

Authors: Charles, Hall; Fred S, Dietrich;

The Reacquisition of Biotin Prototrophy in Saccharomyces cerevisiae Involved Horizontal Gene Transfer, Gene Duplication and Gene Clustering

Abstract

Abstract The synthesis of biotin, a vitamin required for many carboxylation reactions, is a variable trait in Saccharomyces cerevisiae. Many S. cerevisiae strains, including common laboratory strains, contain only a partial biotin synthesis pathway. We here report the identification of the first step necessary for the biotin synthesis pathway in S. cerevisiae. The biotin auxotroph strain S288c was able to grow on media lacking biotin when BIO1 and the known biotin synthesis gene BIO6 were introduced together on a plasmid vector. BIO1 is a paralog of YJR154W, a gene of unknown function and adjacent to BIO6. The nature of BIO1 illuminates the remarkable evolutionary history of the biotin biosynthesis pathway in S. cerevisiae. This pathway appears to have been lost in an ancestor of S. cerevisiae and subsequently rebuilt by a combination of horizontal gene transfer and gene duplication followed by neofunctionalization. Unusually, for S. cerevisiae, most of the genes required for biotin synthesis in S. cerevisiae are grouped in two subtelomeric gene clusters. The BIO1–BIO6 functional cluster is an example of a cluster of genes of “dispensable function,” one of the few categories of genes in S. cerevisiae that are positionally clustered.

Keywords

Saccharomyces cerevisiae Proteins, Gene Transfer, Horizontal, Gene Duplication, Multigene Family, Molecular Sequence Data, Biotin, Saccharomyces cerevisiae, Metabolic Networks and Pathways

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    139
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
139
Top 10%
Top 10%
Top 10%
hybrid