Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Reproductionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Reproduction
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Reproduction
Article
Data sources: UnpayWall
Reproduction
Article . 2003 . Peer-reviewed
Data sources: Crossref
Reproduction
Article . 2003 . Peer-reviewed
Data sources: Crossref
Reproduction
Article . 2003
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Motility of spermatozoa at surfaces

Authors: DM Woolley;

Motility of spermatozoa at surfaces

Abstract

The hydrodynamic basis for the accumulation of spermatozoa at surfaces has been investigated. The general conclusion is that when spermatozoa arrive at a surface, they will remain there if the vector of the time-averaged thrust is directed towards that surface. This can arise in two basic ways. First, consider spermatozoa that maintain a three-dimensional waveform and roll (spin) as they progress: in this case, it is argued that the conical (rather than cylindrical) shape of the flagellar envelope will establish the direction-of-thrust necessary for capture by the surface. (Additional findings, for spermatozoa of this type, are that the swim-trajectory is curved and that the direction of its curvature reveals the roll-direction of the cell.) Second, consider spermatozoa that maintain a strictly two-dimensional waveform at the surface: in this case, spermatozoa can be captured because the plane-of-flattening of the sperm head is tilted slightly relative to the plane of the flagellar beat. The sperm head is acting as a hydrofoil and, in one orientation only, it comes to exert a pressure against the surface. (This pressure may possibly, in vivo, aid the penetration of the zona pellucida.) The hydrofoil action of sperm heads may explain any bias in the circling direction of spermatozoa that execute two-dimensional waves at surfaces. Finally, a more complex phenomenon is where interaction of the spermatozoa with the surface appears to induce a three-dimensional to two-dimensional conversion of the flagellar wave (thus permitting the hydrofoil effect described). This is characteristic of sperm with 'twisted planar' rather than helical waves. In mammalian spermatozoa, approximately half the beat cycle is planar and the other half generates a pattern of torque causing the head to roll clockwise (seen from ahead), producing a torsion of the neck region of the flagellum. It is the gradual suppression of this torsion, by either impedance at the solid boundary or by raised viscosity, that converts the 'twisted planar' shape into a planar wave.

Related Organizations
Keywords

Male, Mice, Inbred Strains, Spermatozoa, Rats, Mice, Chinchilla, Microscopy, Electron, Scanning, Sperm Motility, Animals, Rats, Wistar, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    209
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
209
Top 1%
Top 10%
Top 10%
bronze