
Transcription factors (TFs) control the rate of mRNA production. Technological advances have made the task of measuring mRNA levels for all genes straightforward, but identifying causal relationships between TFs and their target genes remains an unsolved problem in biology. In their recent study, McIsaac and colleagues (Hackett et al, 2020) apply a method for inducing the overexpression of a TF and studying the dynamics with which all transcripts respond. Using time series analysis, they are able to resolve direct effects of TFs from secondary effects. This new experimental and analytical approach provides an efficient means of defining gene regulatory relationships for all TFs.
Medicine (General), R5-920, Gene Expression Regulation, QH301-705.5, News & Views, Biology (General), Transcription Factors
Medicine (General), R5-920, Gene Expression Regulation, QH301-705.5, News & Views, Biology (General), Transcription Factors
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
