
Occasional auto‐modification of ubiquitin ligases typically leads to their proteasomal destruction, but new findings published in The EMBO Journal now show that in the case of Rsp5/Nedd4, auto‐ubiquitylation instead triggers oligomerization and concomitant reduction of ligase activity. This novel mechanism therefore creates silenced ligases that remain poised for reactivation.
Ligases, Proteasome Endopeptidase Complex, Ubiquitin, Ubiquitin-Protein Ligases, Humans
Ligases, Proteasome Endopeptidase Complex, Ubiquitin, Ubiquitin-Protein Ligases, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
