Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dopamine Activates Noradrenergic Receptors in the Preoptic Area

Authors: Cornil, Charlotte; Balthazart, Jacques; Motte, Patrick; Massotte, Laurent; Seutin, Vincent;

Dopamine Activates Noradrenergic Receptors in the Preoptic Area

Abstract

Dopamine (DA) facilitates male sexual behavior and modulates aromatase activity in the quail preoptic area (POA). Aromatase neurons in the POA receive dopaminergic inputs, but the anatomical substrate that mediates the behavioral and endocrine effects of DA is poorly understood. Intracellular recordings showed that 100 microm DA hyperpolarizes most neurons in the medial preoptic nucleus (80%) by a direct effect, but depolarizes a few others (10%). DA-induced hyperpolarizations were not blocked by D1 or D2 antagonists (SCH-23390 and sulpiride). Extracellular recordings confirmed that DA inhibits the firing of most cells (52%) but excites a few others (24%). These effects also were not affected by DA antagonists (SCH-23390 and sulpiride) but were blocked by alpha2-(yohimbine) and alpha1-(prazosin) noradrenergic receptor antagonists, respectively. Two dopamine-beta-hydroxylase (DBH) inhibitors (cysteine and fusaric acid) did not block the DA-induced effects, indicating that DA is not converted into norepinephrine (NE) to produce its effects. The pK(B) of yohimbine for the receptor involved in the DA- and NE-induced inhibitions was similar, indicating that the two monoamines interact with the same receptor. Together, these results demonstrate that the effects of DA in the POA are mediated mostly by the activation of alpha2 (inhibition) and alpha1 (excitation) adrenoreceptors. This may explain why DA affects the expression of male sexual behavior through its action in the POA, which contains high densities of alpha2-noradrenergic but limited amounts of DA receptors. This study thus clearly demonstrates the existence of a cross talk within CNS catecholaminergic systems between a neurotransmitter and heterologous receptors.

Keywords

Male, Sciences sociales & comportementales, psychologie, Adrenergic Antagonists, Dopamine, Action Potentials, Coturnix, Dopamine beta-Hydroxylase, Tetrodotoxin, In Vitro Techniques, Binding, Competitive, Synaptic Transmission, Membrane Potentials, GABA Antagonists, Norepinephrine, Animals, Neurosciences & comportement, Neurons, Neurosciences & behavior, noradrenergic receptors, quail, Preoptic Area, intracellular recording, Receptors, Adrenergic, extracellular recording, Social & behavioral sciences, psychology, Dopamine Agonists, Dopamine Antagonists, dopamine, preoptic area, Microelectrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 10%
Top 10%
Top 10%
bronze