
Events traditionally called “developmental errors” are known to occur in both vertebrate and invertebrate nervous systems. This study was concerned with the frequency and mode of generation of such events in the mammalian retina. We studied three anomalous structures observed in the rabbit's retina after staining of the cell populations that accumulate indoleamines: type 3 cells, stray processes in the optic fiber layer, and displaced cells. They were counted in rabbit retinas prepared as whole-mounts, and in most cases topological maps were made. For comparison, the conventional indoleamine-accumulating amacrine cells and the tyrosine hydroxylase (TH)-positive cells, which are members of the mammalian retina's recognized complement of amacrine cells, were also counted. A further comparison was made with the number and distribution of TH-positive amacrine cells in highly inbred mice. The ordinary amacrine cells did not vary much in number from animal to animal. Especially in inbred mice, the reproducibility was striking: the extreme variation in number of TH amacrine cells between any two of the 14 retinas studied was 22%, and the mean difference between two eyes of individual mice was 2.5 +/- 1.7%. The three anomalous structures were rare and variable. Their numbers varied more than fourfold from animal to animal. However, their numbers in two eyes from the same animal varied by an overall average of only 14 +/- 10%. The anomalous structures were present in all rabbits, and their morphology was the same in all cases: they are under precise control by the developmental program. The anomalous cells share many phenotypic features with the regular amacrine cells of the indoleamine- accumulating class.(ABSTRACT TRUNCATED AT 250 WORDS)
Mice, Indoles, Tyrosine 3-Monooxygenase, Animals, Rabbits, Amines, Retina
Mice, Indoles, Tyrosine 3-Monooxygenase, Animals, Rabbits, Amines, Retina
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
