Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adenosine Triphosphate and Guanosine Triphosphate Determinations in Intertidal Sediments

Authors: DM Karl;

Adenosine Triphosphate and Guanosine Triphosphate Determinations in Intertidal Sediments

Abstract

Measurements were made of the spatial distributions of adenosine triphosphate (ATP) on a variety of sandy beaches. Samples were collected during ebb flow and extracted in the field using cold sulfuric acid and ethylenediamine tetraacetate (EDTA); the neutralized extracts were immediately frozen for subsequent analyses. ATP was measured using the firefly bioluminescent reaction; however, during these investigations, a disparity was observed between the concentrations of ATP that were calculated from peak height and integrated light flux determinations. Integral measurements were consistently higher. Examination of the kinetics of the light emission reaction revealed an altered pattern of reactivity (relative to ATP standards) for nearly all of the sediment extracts. Thin-layer chromatographic separation procedures indicated that the sediment extracts contained additional nucleotide triphosphates (that is, GTP, UTP) at levels high enough to significantly interfere with quantitative ATP determinations. A technique was devised to eliminate this altered kinetic pattern in order to calculate true ATP levels. Additional methods were developed for the quantitative determination of guanosine triphosphate (GTP) using a nucleoside diphosphate kinase-firefly luciferase coupled reaction. The role of GTP in microbial metabolism, especially in the process of protein synthesis, results in an increase in the [GTP]/[ATP] ratio as a function of increasing growth rate. The measurement of [GTP]/[ATP] ratios in cell extracts may be useful for determining the metabolic states and rates of growth of microbial populations in nature.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!