Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Meteorological Radar Signal Processing

Authors: RJ Serafin; R Strauch;

Meteorological Radar Signal Processing

Abstract

Modern meteorological Doppler radar has applications related to measurements of precipitation intensities and kinematics in convective storms, widespread stratiform precipitating systems, winter frontal and cyclonic storm systems, and other cloud systems. In addition, air velocities may be measured in the optically clear atmosphere from backscatter due to refractive index perturbations or from dispersed chaff tracers. In order to derive the maximum scientific benefit from Doppler radar it is necessary to process vast quantities of data in real time at rates in excess of 1 MHz. Fortunately, current integrated circuit technology permits such processing. However, this ability to process data rapidly also produces data rapidly and results in large data sets which must be stored and processed further for outputs of maximum meteorological significance to be derived. Even when data compression ratios of 100:1 are achieved in real time, modern meteorological Doppler radar can produce 9-track, 732-m (2400-ft) tapes at the rate of two per hour. This paper describes the chain of processing from real-time processing and acquisition, to displaying processed single and multiple Doppler radar data. The paper also describes briefly the meteorological significance of the work.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!