
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 12943454
Despite the tremendous success of highly active antiretroviral treatment (HAART) introduced nearly 8 years ago for the treatment of human immunodeficiency virus (HIV), innovative therapies, including gene transfer approaches, are still required for nearly half of the general patient population. A number of potential gene therapeutic targets for HIV have been identified and include both viral and cellular genes essential for viral replication. The diverse methods used to inhibit viral replication comprise RNA-based strategies such as ribozymes, RNA decoys, antisense messenger RNAs and small interfering RNA (siRNA) molecules. Other potential anti-HIV genes include dominant negative viral proteins, intracellular antibodies, intrakines and suicide genes, all of which have had a modicum of success in vitro. Cellular targets include CD4+ T cells, macrophages and their progenitors. The greatest gene transfer efficiency has been achieved using retroviral or, more recently, lentiviral vectors. A limited number of Phase I clinical trials suggest that the general method is safe. It is proposed that a national network for HIV gene therapy (similar to the AIDS Clinical Trial Groups) may be the best way to determine which approaches should proceed clinically.
Gene Expression Regulation, Viral, Acquired Immunodeficiency Syndrome, Clinical Trials as Topic, Genetic Vectors, Lentivirus, HIV Infections, Genetic Therapy, Retroviridae, HIV-1, Humans, RNA, Small Interfering
Gene Expression Regulation, Viral, Acquired Immunodeficiency Syndrome, Clinical Trials as Topic, Genetic Vectors, Lentivirus, HIV Infections, Genetic Therapy, Retroviridae, HIV-1, Humans, RNA, Small Interfering
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
