
pmid: 11890869
The number of patients in need of an organ transplant is increasing, while the number of satisfactory sources of organs has declined in many countries [101]. The resulting shortage of human organs has spurred an urgent effort to investigate alternative therapies, including the use of animal organs, tissues and cells (i.e., xenotransplantation). Advances in genetic engineering have provided essential tools for the development of practical solutions to human disease. The area of xenotransplantation is no exception. In fact, the use of genetic therapies is especially attractive in the transplant setting as it offers an opportunity to manipulate the donor tissue rather than the recipient. This review will describe the obstacles in the clinical application of xenotransplantation and how genetic engineering might be used to address them.
Cell Transplantation, Zoonoses, Transplantation, Heterologous, Animals, Humans, Genetic Therapy, Genetic Engineering
Cell Transplantation, Zoonoses, Transplantation, Heterologous, Animals, Humans, Genetic Therapy, Genetic Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
