
Abstract In this paper, I propose a populational schema of modeling that consists of: (a) a linear AFSV schema (with four basic stages of abstraction, formalization, simplification, and verification), and (b) a higher-level schema employing the genetic algorithm (with partially random procedures of mutation, crossover, and selection). The basic ideas of the proposed solution are as follows: (1) whole populations of models are considered at subsequent stages of the modeling process, (2) successive populations are subjected to the activity of genetic operators and undergo selection procedures, (3) the basis for selection is the evaluation function of the genetic algorithm (this function corresponds to the model verification criterion and reflects the goal of the model). The schema can be applied to automate the modeling of the mind/brain by means of artificial neural networks: the structure of each network is modified by genetic operators, modified networks undergo a learning cycle, and successive populations of networks are verified during the selection procedure. The whole process can be automated only partially, because it is the researcher who defines the evaluation function of the genetic algorithm.
modeling schema (linear vs. populational), cognitive models, AZ20-999, modeling, History of scholarship and learning. The humanities, artificial intelligence, artificial neural networks, genetic algorithms
modeling schema (linear vs. populational), cognitive models, AZ20-999, modeling, History of scholarship and learning. The humanities, artificial intelligence, artificial neural networks, genetic algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
