
pmid: 20134073
SummaryWe describe a method for querying vertex- and edge-labeled graphs using context-free grammars to specify the class of interesting paths. We introduce a novel problem, finding the connection subgraph induced by the set of matching paths between given two vertices or two sets of vertices. Such a subgraph provides a concise summary of the relationship between the vertices. We also present novel algorithms for parsing subgraphs directly without enumerating all the individual paths. We evaluate experimentally the presented parsing algorithms on a set of real graphs derived from publicly available biomedical databases and on randomly generated graphs. The results indicate that parsing the connection subgraph directly is much more effective than parsing individual paths separately. Furthermore, we show that using a bidirectional parsing algorithm, in most cases, allows for searching twice as long paths as using a unidirectional search strategy.
Databases, Factual, Computational Biology, Data processing, computer science, computer systems, TP248.13-248.65, Algorithms, Biotechnology, Pattern Recognition, Automated, 004
Databases, Factual, Computational Biology, Data processing, computer science, computer systems, TP248.13-248.65, Algorithms, Biotechnology, Pattern Recognition, Automated, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
