
AbstractFisetin is a polyphenolic compound with anti-inflammatory and antioxidant properties. Inflammation and reactive oxygen species play a major role in the pathophysiology of the dry eye syndrome (DES). Patients with DES undergo symptomatic treatment using eye drops known as artificial tears. Addition of fisetin into the eye drops could result in a better recovery of the eye surface. This experimental study examines the stability of fisetin in selected eye drops (Arufil, Hypromelóza-P, Ocutein, Refresh). Absorption spectra of fisetin were measured in selected eye drops, dimethylsulphoxide (DMSO), deionized water and normal saline solution (NSS) during a period of four weeks. The fisetin absorption maximum was placed at 350 – 390 nm depending on the solvent. Good stability of fisetin solutions were observed in DMSO and deionized water. The highest stability of fisetin in selected eye drops was observed in Hypromelóza-P. Irreversible fisetin structural changes were detected in Arufil, Ocutein, Refresh and NSS. For further clinical evaluation, fisetin solution in Hypromelóza-P could be examined.
Chemistry, ph, fisetin, dry eye syndrome, stability, QD1-999
Chemistry, ph, fisetin, dry eye syndrome, stability, QD1-999
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
