<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal convection in a fluid layer is an example of a dynamical system governed by partial differential equations. As the relevant control parameter (the Rayleigh number) is increased, successive bifurcations may lead to chaos and the nature of the transition depends on the spatial structure of the flow. Numerical experiments with idealized symmetry and boundary conditions make it possible to explore nonlinear behaviour in some detail and to relate bifurcation structures to those found in appropriate low-order systems. Two examples are used to illustrate transitions to chaos. In two-dimensional thermosolutal convection, where the spatial structure is essentially trivial, chaos is caused by a heteroclinic bifurcation involving a symmetric pair of saddle foci. When convection is driven by internal heating several competing spatial structures are involved and the transition to chaos is more complicated in both two- and three-dimensional configurations. Although the first few bifurcations can be isolated a statistical treatment is needed for behaviour at high Rayleigh numbers.
Absolute and convective instability and stability in hydrodynamic stability, two-dimensional thermosolutal convection, thermal convection, dynamical system
Absolute and convective instability and stability in hydrodynamic stability, two-dimensional thermosolutal convection, thermal convection, dynamical system
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |