
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 20940125
In recent years, the number of shared biomedical ontologies has increased dramatically, resulting in a need for integration of these knowledge sources. Automated solutions to aligning ontologies address this growing need. However, only very recently, solutions for scalability of ontology alignment have begun to emerge. This research investigates scalability in alignment of large-scale ontologies. We present an alignment algorithm that bounds processing by selecting optimal subtrees to align and show that this improves efficiency without significant reduction in precision. We apply the algorithm in conjunction with our approach that includes modelling ontology alignment in a Support Vector Machine.
Vocabulary, Controlled, Algorithms, Natural Language Processing
Vocabulary, Controlled, Algorithms, Natural Language Processing
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
