
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 31078152
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths. Compound K, an active metabolite of ginsenosides, is reported to exhibit anti-cancer property in various types of human malignancies. The present study investigated the role of compound K on glucose metabolism in NSCLC cells and its underlying mechanism. Our study found that compound K dose-dependently inhibited the cell viability of NSCLC cells. Moreover, administration with compound K decreased glucose uptake and lactate secretion under normoxic and hypoxic conditions. Consistently, the expression of key enzymes (HK II, PDK1 and LDHA) involved in glucose metabolism were inhibited in compound K-treated tumor cells. In addition, compound K inhibited the expression of HIF-1α and its downstream gene GLUT1. On the contrary, overexpression of HIF-1α elevated metabolic reactions and partly attenuated the inhibitory role of compound K on NSCLC cell growth. These results demonstrate that compound K suppresses NSCLC cell growth via HIF-1α mediated metabolic alteration, contributing to novel anticancer therapy by targeting glucose metabolism.
Gene Expression Regulation, Neoplastic, Glucose, Lung Neoplasms, Cell Death, Ginsenosides, Cell Line, Tumor, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Cell Proliferation
Gene Expression Regulation, Neoplastic, Glucose, Lung Neoplasms, Cell Death, Ginsenosides, Cell Line, Tumor, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Cell Proliferation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.  | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.  | Top 10% | 
