Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Computer modeling of hot isostatic pressing process of porous blank

Компьютерное моделирование процесса горячего изостатического прессования пористых заготовок
Authors: BARKOV L.A.; CHESKIDOV P.A.; SAMODUROVA M.N.; LATFULINA YU.S.;

Computer modeling of hot isostatic pressing process of porous blank

Abstract

Existing mathematical models for the process of HIP porous blanks are based on the solution of approximately differential equations of the equilibrium of quasi-continuous medium. The continual approach is used for computer modeling of the compressible body HIP process. Partial differential equations of motion for a quasi-continuous packing medium and physical equations for a viscous-plastic isotropic porous material subjected to work hardening are taken as the basis for the mathematical model by means of these simultaneous equations. Besides the equations of motion and the rheological equation, the equation of continuity deformation and the equation of heat flow are used. Numerical calculations for additional packing of a high-speed steel powder billet preliminary pressed in the hydrostat are performed. Numerical calculation of the problem for hardening the cylindrical high-speed steel billet with a mild steel shell is done using Lagrange’s method by means of the difference scheme of continuous calculation of the Wilkins’ type. Computer modeling allows to control the process of hardening and changing the form of a porous body during the HIP process.

Country
Russian Federation
Keywords

математическая модель, УДК 621.731.4, continuum, 621.731.4 [УДК 517.958], континуум, CONTINUUM,MATHEMATICAL MODEL,POWDER BLANK,DIFFERENT EQUATION,RHEOLOGY,КОНТИНУУМ,МАТЕМАТИЧЕСКАЯ МОДЕЛЬ,ПОРОШКОВАЯ ЗАГОТОВКА,ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ,РЕОЛОГИЯ, порошковая заготовка, powder blank, rheology, дифференциальное уравнение, порошковая заготовка; дифференциальное уравнение; реология, mathematical model

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold