Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generating dynamic verification tools for generalized symbolic trajectory evaluation (GSTE)

Authors: Ng, Kelvin Kwok Cheung;

Generating dynamic verification tools for generalized symbolic trajectory evaluation (GSTE)

Abstract

Formal and dynamic (simulation, emulation, etc.) verification techniques are both needed to deal with the overall challenge of verification. Unfortunately, the same specification does not always work with both techniques. In particular, Generalized Symbolic Trajectory Evaluation (GSTE) is a powerful formal verification technique developed by Intel and successfully used on next-generation microprocessor designs, but the specification formalism for GSTE relies on "symbolic constants", which intrinsically exploit the underlying formal verification engine and cannot be reasonably handled via non-symbolic means. In this thesis, I propose a modified version of GSTE specifications and present efficient, automatic constructions to convert from the new simulation-friendly GSTE specifications into conventional GSTE specifications (to access the formal verification tool flow) as well as into monitor circuits suitable for conventional dynamic verification. I also investigate the construction from the monitor circuits into testbench generator circuits. I implemented the proposed constructions to demonstrate that my approach is practical and efficient.

Countries
Canada, Mexico, United States, Canada
Keywords

000, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!