Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On hamilton cycles and hamilton cycle decompositions of graphs based on groups

Authors: Dean, Matthew Lee Youle;

On hamilton cycles and hamilton cycle decompositions of graphs based on groups

Abstract

A Hamilton cycle is a cycle which passes through every vertex of a graph. A Hamilton cycle decomposition of a k-regular graph is defined as the partition of the edge set into Hamilton cycles if k is even, or a partition into Hamilton cycles and a 1-factor, if k is odd. Consequently, for 2-regular or 3-regular graphs, finding a Hamilton cycle decompositon is equilvalent to finding a Hamilton cycle. Two classes of graphs are studies in this thesis and both have significant symmetry. The first class of graphs is the 6-regular circulant graphs. These are a king of Cayley graph. Given a finite group A and a subset S ⊆ A, the Cayley Graph Cay(A,S) is the simple graph with vertex set A and edge set {{a, as}|a ∈ A, s ∈ S}. If the group A is cyclic then the graph is called a circulant graph. This thesis proves two results on 6-regular circulant graphs: 1. There is a Hamilton cycle decomposition of every 6-regular circulant graph Cay(Z[subscript n],S) in which S has an element of order n; 2. There is a Hamilton cycle decomposition of every connected 6-regular circulant graph of odd order. The second class of graphs examined in this thesis is a futher generalization of the Generalized Petersen graphs. The Petersen graph is well known as a highly symmetrical graph which does not contain a Hamilton cycle. In 1983 Alspach completely determined which Generalized Petersen graphs contain Hamilton cycles. In this thesis we define a larger class of graphs which includes the Generalized Petersen graphs as a special case. We call this larger class spoked Cayley graphs. We determine which spoked Cayley graphs on Abelian groups are Hamiltonian. As a corollary, we determine which are 1-factorable.

Country
Australia
Related Organizations
Keywords

Set Theory, Lattices And Combinatorics, 511, 230101 Mathematical Logic, L

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!