Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Himiâ Rastitelʹnogo ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Himiâ Rastitelʹnogo Syrʹâ
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Himiâ Rastitelʹnogo Syrʹâ
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

STUDY OF COMPONENT COMPOSITION OF MEDICINAL PLANT MATERIALS BY GAS CHROMATOGRAPHY WITH MASS-SPECTROMETRIC DETECTION

Authors: Жестовская (Zhestovskaya), Елизавета (Elizaveta) Сергеевна (Sergeevna); Антохин (Antokhin), Андрей (Аndrej) Михайлович (Mikhajlovich); Таранченко (Taranchenko), Виктор (Viktor) Федорович (Fedorovich); Василевский (Vasilevskiy), Сергей (Sergej) Валерьевич (Valer'evich); Аксенов (Aksenov), Алексей (Аleksej) Вадимович (Vadimovich); Аксенова (Aksenova), Юлия (Yuliya) Борисовна (Borisovna); Ласкина (Laskina), Любовь (Lyubov') Юрьевна (Yur'evna); +2 Authors

STUDY OF COMPONENT COMPOSITION OF MEDICINAL PLANT MATERIALS BY GAS CHROMATOGRAPHY WITH MASS-SPECTROMETRIC DETECTION

Abstract

Component composition of extracts 14 medicinal materials kinds was study by gas chromatography with mass-spectrometric detection for revealing of the marker compounds specific for particular plant species. Extraction of components from the investigated objects was carried out by extraction of dry ground raw material with ethanol. For the analysis of polar compounds, the extracts were further derivatized to give the corresponding trimethylsilyl derivatives. Identification of components was carried out using commercial (NIST11, Wiley14) and own custom mass-spectrometer libraries. A number of compounds with species specificity were found for Schisandra chinensis, Ginkgo biloba, Oplopanax elatus, Oplopanax horridus, Ferula soongarica, Epimedium brevicornu, Epimedium koreanu, Cnidium Monnieri, Tribulus terrestris. The possibility of practical application of identified marker compounds for establishing the authenticity and quality control of multicomponent plant gathering and biologically active food additives on the example of the analysis BAA «Vertera Endo mix», «REDTEST», «Devil’s Club» is shown. Based on the analysis of extracts Panax ginseng, Aralia mandshurica, Rhodiola rosea, Eurycoma longifolia and Eleutherococcus senticosus, it was not possible to identify marker compounds

Related Organizations
Keywords

marker compounds, газовая хроматография, лекарственные растения, gas chromatography, растительные лекарственные средства, соединения-маркеры, mass-spectrometry, масс-спектрометрия, phytopharmaceuticals, BAA, medicinal plants, БАД

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities