Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2002 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://doi.org/10.1385/1-5925...
Part of book or chapter of book . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ecology of Microbial Neurotoxins

Authors: Lyndon E. Llewellyn;

Ecology of Microbial Neurotoxins

Abstract

Biosynthesis of toxins uses precious cellular energy and it would seem unlikely that evolution would be forgiving enough to tolerate wasted metabolism. Although there is much debate about this proposition in the guise of secondary vs primary metabolites (1,2), it is a reasonable hypothesis that toxins of all kinds should play some beneficial role. This return is apparent when one considers toxins used for prey capture or self-defense as occurs with venoms. For microbial neurotoxins, however, the identity of this biological profit remains a mystery. This is especially so when one considers that the microbes that manufacture these toxins, and those microorganisms that surround them, do not possess nerves nor many of the molecular systems that characterize nerves. The few exceptions to this rule are those microbial toxins that attack generic cellular systems common to many cell types, including nerve cells. An example is the dinoflagellate toxin okadaic acid, an inhibitor of certain serine-threonine protein phosphatases, enzymes that occur widely in different cell types in animals and plants as well as microorganisms (3–5). In fact, an okadaic acid sensitive form of this enzyme has been isolated from the dinoflagellate, Prorocentrum lima, an established producer of okadaic acid (6).One can hypothesize then that okadaic acid may act as a physiological regulator of this enzyme within the dinoflagellate itself or upon unrelated microbes in its vicinity. The larger mystery lies with microbial neurotoxins that attack cellular and molecular neural processes not present in microbes.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!