Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CHEST Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CHEST Journal
Article . 1988 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
CHEST Journal
Article . 1988
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cardiovascular Effects of Conventional Positive Pressure Ventilation and Airway Pressure Release Ventilation

Authors: Jukka Räsänen; M. C. Stock; John B. Downs;

Cardiovascular Effects of Conventional Positive Pressure Ventilation and Airway Pressure Release Ventilation

Abstract

The hemodynamic sequelae of conventional positive pressure ventilation (CPPV), airway pressure release ventilation (APRV), and spontaneous breathing were compared with continuous positive airway pressure (CPAP) in ten anesthetized dogs who had ventilatory failure with and without parenchymal lung injury. The APRV corrected respiratory acidosis without significantly effecting arterial blood oxygenation, venous admixture, cardiovascular function, or tissue oxygen utilization. Application of CPPV precipitated marked depressions in blood pressure, stroke volume, and cardiac output. A concomitant decrease in venous admixture did not compensate for these adverse cardiovascular effects. Deterioration of tissue oxygen delivery resulted in oxygen supply-demand imbalance during CPPV. The results of this experimental study indicate that if ventilatory augmentation of subjects who require CPAP is desired, APRV will enhance alveolar ventilation without compromising circulatory function and tissue oxygen balance, whereas CPPV will impair cardiovascular function significantly.

Related Organizations
Keywords

Positive-Pressure Respiration, Dogs, Respiration, Hemodynamics, Animals, Stroke Volume, Myocardial Contraction, Respiration, Artificial

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?