Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amsterdam UMC (VU Am...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CHEST Journal
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
CHEST Journal
Article . 2015
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Breathomics in Lung Disease

Authors: Willem Marinus Christiaan van Aalderen; Paul Brinkman; Tamara Paff; Peter J. Sterk; Eric G. Haarman; Marc P. van der Schee; Marc P. van der Schee;

Breathomics in Lung Disease

Abstract

Volatile organic compounds (VOCs) are produced by virtually all metabolic processes of the body. As such, they have potential to serve as noninvasive metabolic biomarkers. Since exhaled VOCs are either derived from the respiratory tract itself or have passed the lungs from the circulation, they are candidate biomarkers in the diagnosis and monitoring of pulmonary diseases in particular. Good examples of the possibilities of exhaled volatiles in pulmonary medicine are provided by the potential use of VOCs to discriminate between patients with lung cancer and healthy control subjects and to noninvasively diagnose infectious diseases and the association between VOCs and markers of disease activity that has been established in obstructive lung diseases. Several steps are, however, required prior to implementation of breath-based diagnostics in daily clinical practice. First, VOCs should be studied in the intention-to-diagnose population, because biomarkers are likely to be affected by multiple (comorbid) conditions. Second, breath collection and analysis procedures need to be standardized to allow pooling of data. Finally, apart from probabilistic analysis for diagnostic purposes, detailed examination of the nature of volatile biomarkers not only will improve our understanding of the pathophysiologic origins of these markers and the nature of potential confounders but also can enable the development of sensors that exhibit maximum sensitivity and specificity toward specific applications. By adhering to such an approach, exhaled biomarkers can be validated in the diagnosis, monitoring, and treatment of patients in pulmonary medicine and contribute to the development of personalized medicine.

Country
Netherlands
Related Organizations
Keywords

Lung Diseases, Breath Tests, Exhalation, Pulmonary Medicine, Humans, Lung, Biomarkers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    171
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
171
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?