Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CHEST Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CHEST Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CHEST Journal
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
CHEST Journal
Article . 2013
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efferocytosis and Lung Disease

Authors: Alexandra L, McCubbrey; Jeffrey L, Curtis;

Efferocytosis and Lung Disease

Abstract

In healthy individuals, billions of cells die by apoptosis each day. Clearance of these apoptotic cells, termed "efferocytosis," must be efficient to prevent secondary necrosis and the release of proinflammatory cell contents that disrupt tissue homeostasis and potentially foster autoimmunity. During inflammation, most apoptotic cells are cleared by macrophages; the efferocytic process actively induces a macrophage phenotype that favors tissue repair and suppression of inflammation. Several chronic lung diseases, particularly airways diseases such as chronic obstructive lung disease, asthma, and cystic fibrosis, are characterized by an increased lung burden of uningested apoptotic cells. Alveolar macrophages from individuals with these chronic airways diseases have decreased efferocytosis relative to alveolar macrophages from healthy subjects. These two findings have led to the hypothesis that impaired apoptotic cell clearance may contribute causally to sustained lung inflammation and that therapies to enhance efferocytosis might be beneficial. This review of the English-language scientific literature (2006 to mid-2012) explains how such existing therapies as corticosteroids, statins, and macrolides may act in part by augmenting apoptotic cell clearance. However, efferocytosis can also impede host defenses against lung infection. Thus, determining whether novel therapies to augment efferocytosis should be developed and in whom they should be used lies at the heart of efforts to differentiate specific phenotypes within complex chronic lung diseases to provide appropriately personalized therapies.

Related Organizations
Keywords

Lung Diseases, Phenotype, Phagocytosis, Macrophages, Alveolar, Smoking, Homeostasis, Humans, Apoptosis, Precision Medicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 1%
Top 10%
Top 10%
bronze