Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring the mechanism of hyperpermeability following glycocalyx degradation: Beyond the glycocalyx as a structural barrier

Authors: Takehiko Iijima; Kyoko Abe; Junichi Tanaka; Kenji Mishima;

Exploring the mechanism of hyperpermeability following glycocalyx degradation: Beyond the glycocalyx as a structural barrier

Abstract

Pathological hyperpermeability is a morbidity involved in various systemic diseases, including sepsis. The endothelial glycocalyx layer (GCX) plays a key role in controlling vascular permeability and could be a useful therapeutic target. The purpose of the present study was to analyze the functional role of the GCX in vascular permeability and to elucidate its role in pathological conditions. First, male C57BL/6J wild-type mice were used as in vivo models to study the effects of sepsis and the pharmacological digestion of glycosaminoglycans (GAGs) on the GCX. Vascular permeability was evaluated using fluorescein isothiocyanate (FITC)-labeled dextran. Second, the changes in gene expression in vascular endothelial cells after GAGs digestion were compared between a control and a septic model using RNA sequencing. In the in vivo study, the glycocalyx was depleted in both the septic model and the group with pharmacological GAGs digestion. FITC-labeled dextran had leaked into the interstitium in the septic group, but not in the other groups. In the in vitro study, histamine decreased the transendothelial electrical resistance (TEER), indicating an increase in permeability. GAGs digestion alone did not change the TEER, and the effect of histamine on the TEER was not enhanced by GAGs digestion. The gene expression profiles after GAGs digestion differed from the control condition, indicating the initiation of signal transduction. In conclusion, we demonstrated that the structural barrier of the GCX does not solely determine the fluid permeability of the endothelial layer, since enzymatic depletion of the GCX did not increase the permeability. The gene expression findings suggest that the digestion of GAGs alone did not induce hyperpermeability either in vitro or in vivo, although sepsis did induce hyperpermeability. While GAGs degradation by itself does not appear to induce hyperpermeability, it may play an important role in initiating signal transductions.

Keywords

Male, Science, Q, R, Dextrans, Glycocalyx, Capillary Permeability, Mice, Inbred C57BL, Mice, Sepsis, Medicine, Animals, Endothelium, Vascular, Fluorescein-5-isothiocyanate, Research Article, Glycosaminoglycans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Green
gold